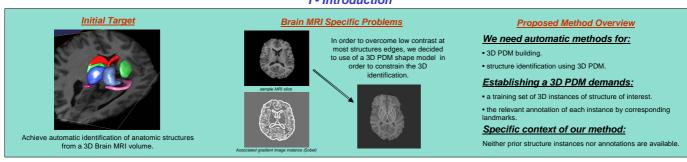
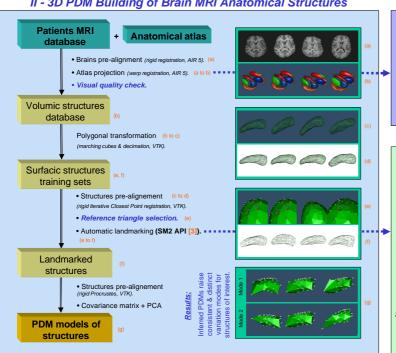
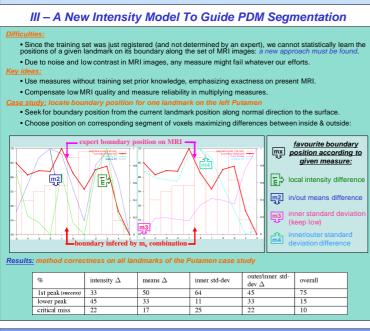


Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen UMR CNRS 6072

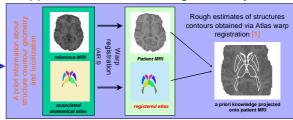


SEGMENTATION OF ANATOMICAL STRUCTURES FROM 3D BRAIN MRI USING **AUTOMATICALLY-BUILT STATISTICAL SHAPE MODELS**

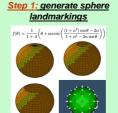

Jonathan Bailleul, Su Ruan, Daniel Bloyet, Barbara Romaniuk

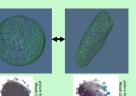

GREYC CNRS UMR 6072, ENSICAEN, 6, Bd du Maréchal Juin, 14050 Caen, France (bailleul@greyc.ensicaen.fr)

I - Introduction



II - 3D PDM Building of Brain MRI Anatomical Structures

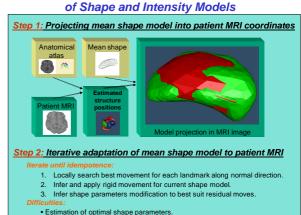



(a) Structure Estimation through Atlas Projection

(b) Automatic Landmarking Overview

landmarks to structure

distribution fonction of Cauchy Kernels Spherical mapping of each structure optimizing need only few parameters, favouring


angle & area preservation

Step 3: quantify the quality of current PDM

MDL(PDM) = MDL(mean shape) + MDL(significant modes) + MDL(residual modes)

A Minimum Description Length (MDL) based objective function evaluates current PDM, balancing its generalization ability with correctness. Its minimization enables the simplex to converge to an « optimal » PDM.

Perspective: MRI Segmentation through joint Use of Shape and Intensity Models

• Shape model « crushes » if locally too far from estimated boundary.