

GREYC Image - UMR 6072

Statistical Shape Model-based Segmentation of brain MRI Images

Jonathan Bailleul, Su Ruan, Jean-Marc Constans

1. Context

- 2. Need for shape priors.
- 3. Introduction to the Point Distribution shape Model (PDM)
- 4. Automatic construction of PDMs in 3D MRI
- 5. Improved Active Shape Model

Automatic delineation of deep nuclei in 3D brain MRI

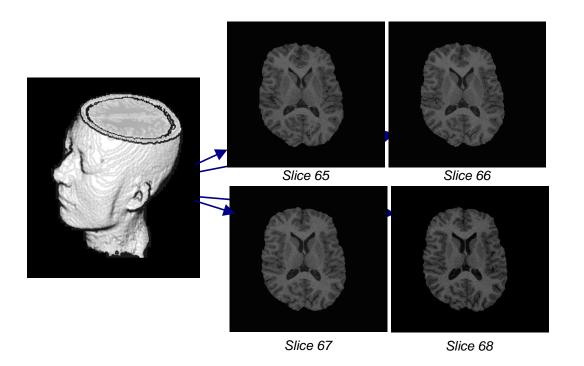
Target

Input data: Brain MRI

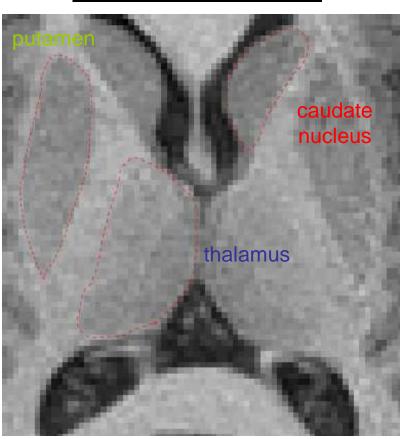
T1-ponderated « anatomical » MRI

• Dimension: 256x256x124 voxels

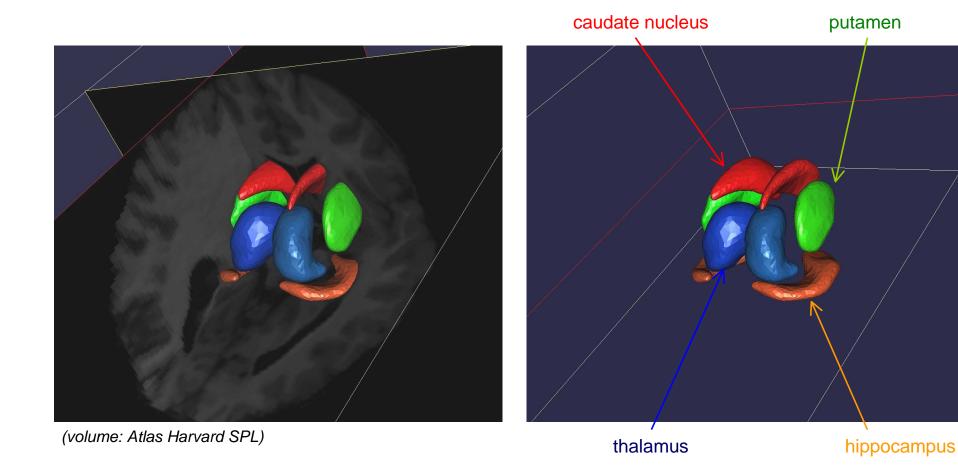
Spatial resolution: 1mm (isotropic)



<u>Delineation of deep brain</u> <u>anatomical structures</u>



30/08/2007 GREYC Image 3



Statistical studies on MRI databases:

□ Functionnal brain mapping:

Anatomic localization (IRM) of functionnal activation signals (IRMf) occurring when the patient performs a given cognitive task (e.g calculus)

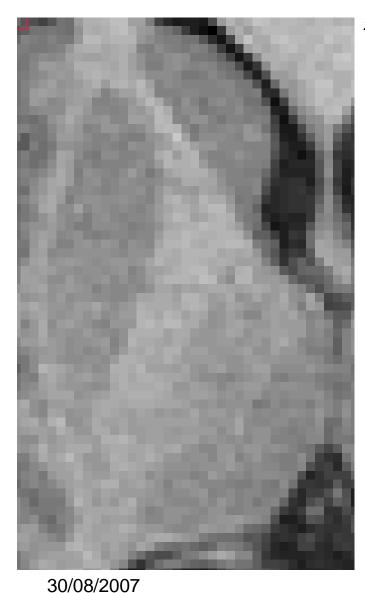
□ Characterizing neurologic pathologies :

- Parkinson disease alters thalami/hippocampi volumes.
- Schizophrenia alters the shape of hippocampi.

□ Data mining:

Blind research of correlations between patient features (e.g gender, handedness) and nuclei features (e.g shape, volume)

- 1. Context
- 2. Need for shape priors.
- 3. Introduction to the Point Distribution shape Model (PDM)
- 4. Automatic construction of PDMs in 3D MRI
- 5. Improved Active Shape Model



zoom on region of interest

MRI slice sample

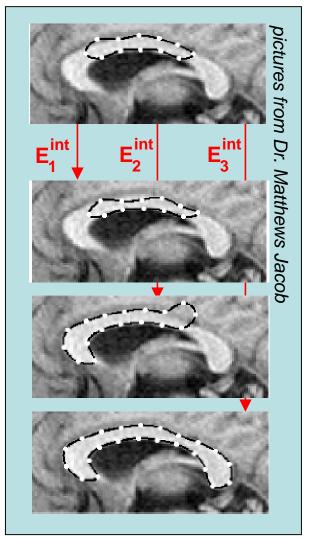
Expected delineation

a priori information is required to achieve delineation

A case study on a discrete 2D snake

Delineation is achieved in minimizing the sum of two energies:

- a) external energy, driving points towards the estimated boundary.
- b) *internal energy*, minimizing:
 - contour lenght (elasticity)
 - contour curvature (rigidity)



A case study on the 3D discrete 'smart snake' (PDM)

Delineation is achieved when iterative deformation of the

prototype reaches idempotence:

- a) the Intensity Model proposes a move for each point in surface normal direction.
- b) the Statistical Shape Model (PDM), amends the previous moves so as to enforce shape constraints on the prototype.

Shape prototype

30/08/2007

GREYC Image

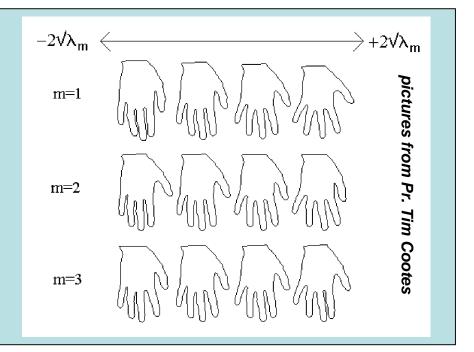
- 1. Context
- 2. Need for shape priors.
- 3. Introduction to the Point Distribution shape Model (PDM)
- 4. Automatic construction of PDMs in 3D MRI
- 5. Improved Active Shape Model

Input data: a training set of outlines of the shape to learn

output data:

A shape model:

- > generating likely shape instances
- determining wether an arbitrary instance matches learned shape

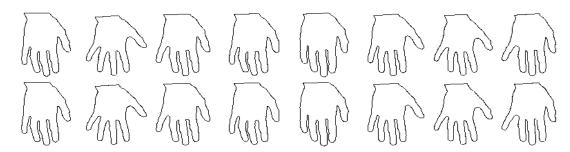


Explicit a priori shape information

GREYC Image

Point Distribution Model (PDM)

Formatting input data



- We must first collect various outlines of the shape to learn
- Each shape instance must be annotated by corresponding landmark points
- « A landmark is a point of correspondence in each object that matches between and within populations » [1]

Point Distribution Model (PDM)

Statistical shape analysis

- ➤ Each instance annotated by *n* landmarks
- \triangleright landmarking m shape instances in a 2D space produces m dots in a 2n-dimensional space.
- \triangleright A mean shape X_m is computed by averaging.
- \triangleright PCA can extract eigenvectors p_k and associated eigenvalues v_k .

We can define an « Allowable Shape Domain » (ASD) as: $x = X_m + Pb$

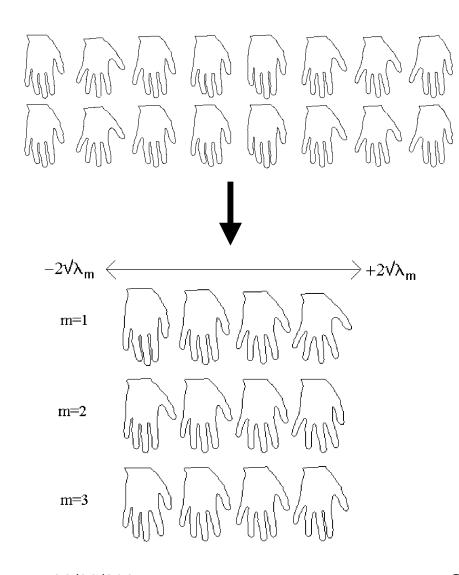
- P: $(p_1, p_2, ..., p_t)$, matrix of most significant eigenvectors
- **b**: $(\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_t)^T$, a set of bounded shape coefficients $|\mathbf{b}_t| <= 3* \mathrm{sqrt}(\mathbf{v}_t)$

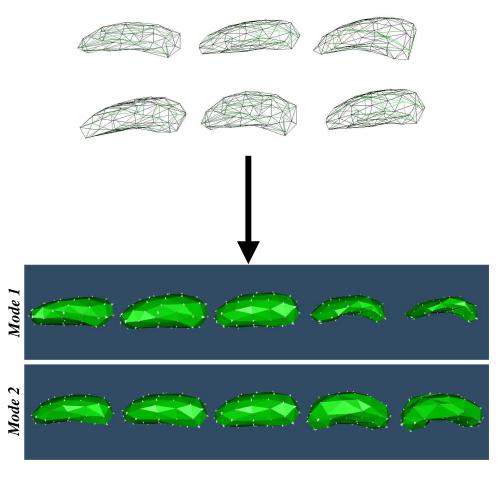
 $-2\sqrt{\lambda_m}$ \in

m=1

30/08/2007

GREYC Image



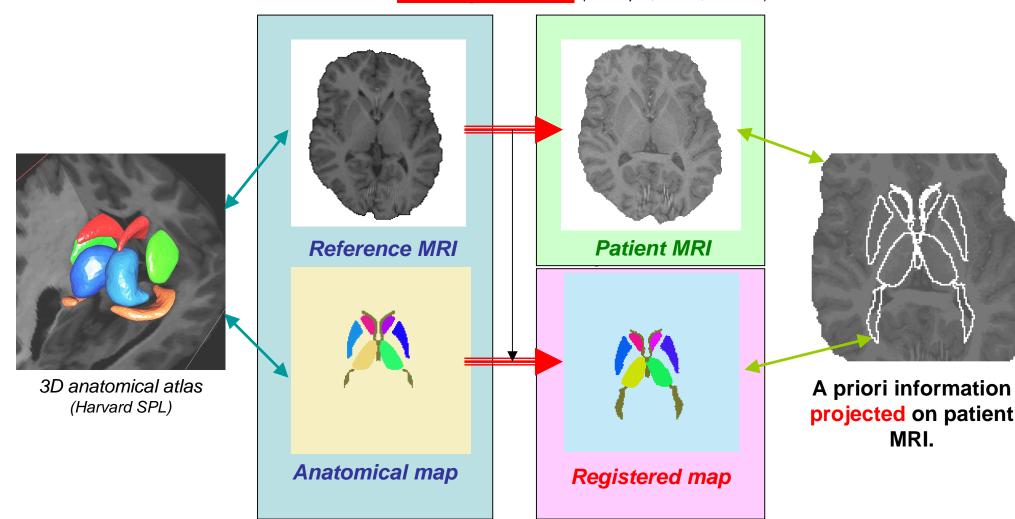


•Frangi, Rueckert et al. •Gerig et al.

•Kelemen, Szekely et al. •Pitiot, Thompson et al.

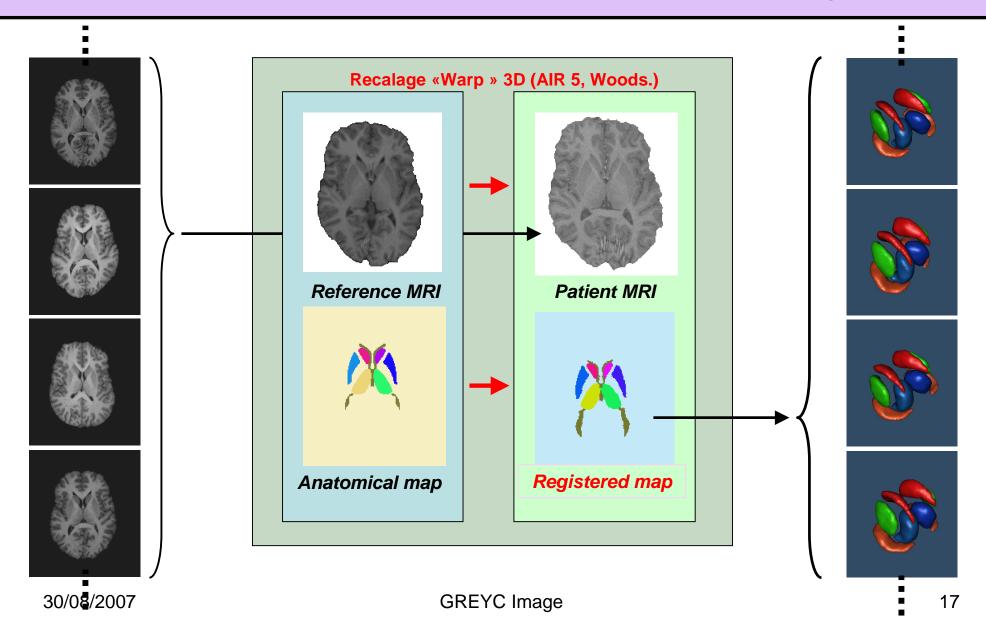
- 1. Context
- 2. Need for shape priors.
- 3. Introduction to the Point Distribution shape Model (PDM)
- 4. Automatic construction of PDMs in 3D MRI
- 5. Improved Active Shape Model

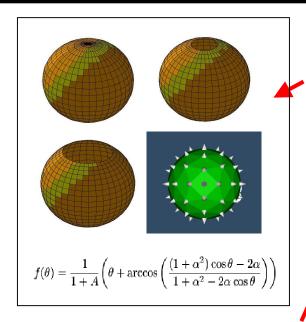
3D Registration (« Warp », AIR 5, Woods.)



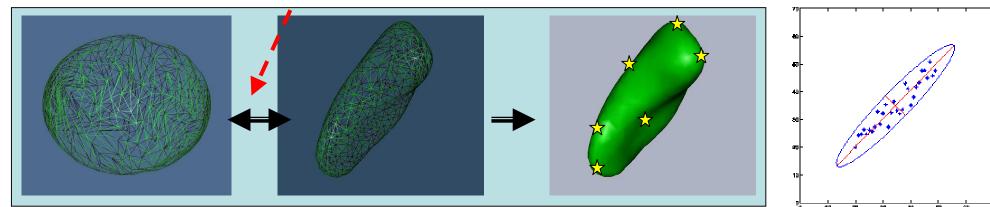
Automatic 3D PDM Building:

Training set building using atlas registration





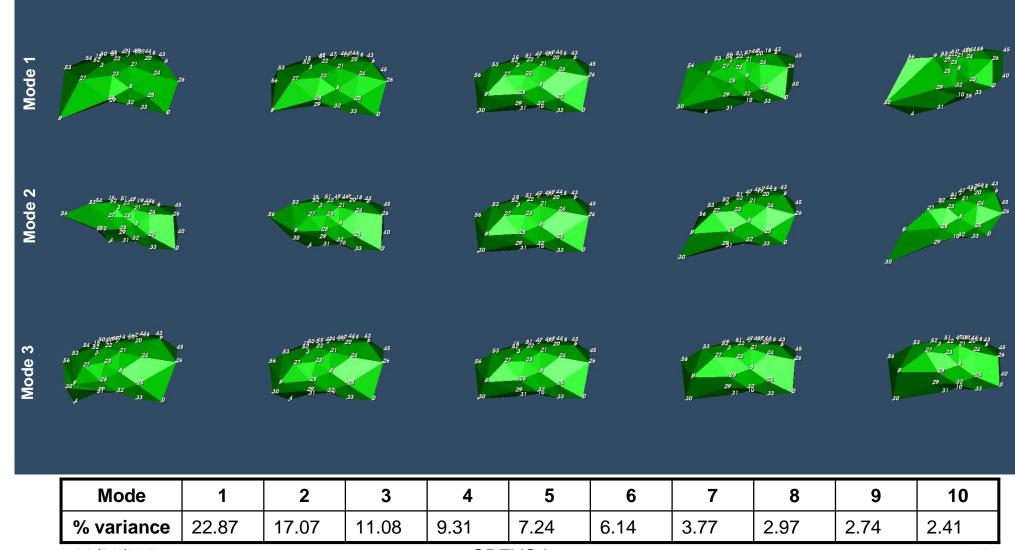
- ■Cauchy kernels allow compact parameterization of n landmarks on a unit sphere
- Correspondences between shape instances and triangulated spheres are computed once by conformal projection
- Simplex optimizes parameterization in quantifying compactness and accuracy of the resulting PDM



Davies, Twining, Cootes, Waterton, Taylor: « A Minimum Description Length Approach to Statistical Shape Modeling », IEEE Trans. Med. Imaging, vol. 21(5), May 20 Allan Reinhold Kildeby, Rasmus Larsen: « Building optimal 3D shape models », Masters Thesis, IMM, Technical University of Denmark, 2002

Variation modes samples

Putamen (left instance):



Automatic 3D PDM Building:

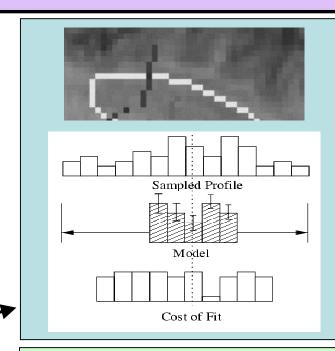
Summary of contribution

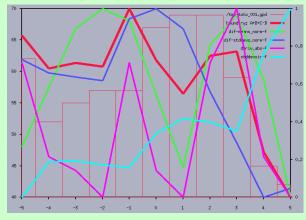
Contribution:

•no need for (very very) tedious expert delineation or landmarking [2]

Drawbacks:

- ➤ No exact correspondence between automatic delineations and MRIs
- ➤ The standard statistical Intensity Model is then no more applicable [1]
- ➤ A new Intensity Model had been specifically designed [3]





^[1] Cootes, Hill, Taylor, Haslam: «Use of Active Shape Model for locating structures in medical images», Image and Vision Computing, vol. 12(6), June 1994.

^[2] Bailleul, Ruan, Bloyet, Romaniuk: «Segmentation of Anatomical Structures in 3D Brain MRI using automatically built Statistical Shape Models», IEEE ICIP, Oct 2004, Singapore

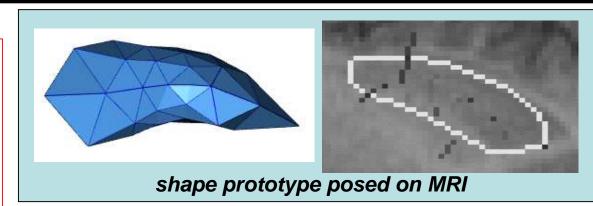
^[3] Bailleul, Ruan, Bloyet: «Automatic Atlas-Based building of Point Distribution Model for Segmentation of Anatomical Structures in 3D Brain MRI», IEEE ISSPA, July 2003, Paris

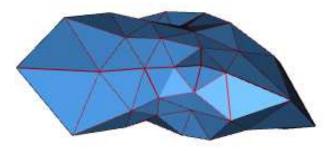
- 1. Context
- 2. Need for shape priors.
- 3. Introduction to the Point Distribution shape Model (PDM)
- 4. Automatic construction of PDMs in 3D MRI
- 5. Improved Active Shape Model

Active Shape Model

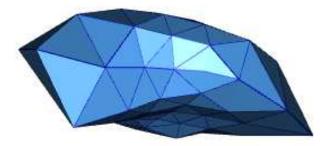
A detailed overview on the standard framework

- a) The landmarked shape prototype is posed into MRI as close as possible to actual contours
- b) the Intensity Model proposes a move for each point in surface normal direction.
- c) the Statistical Shape Model (PDM) finds the closest shape instance from the Allowable Shape Domain (ASD)
- d) Repeat b+c until idempotence





prototype adapted towards closest boundary



shape prototype posed on MRI

30/08/2007 GREYC Image 22

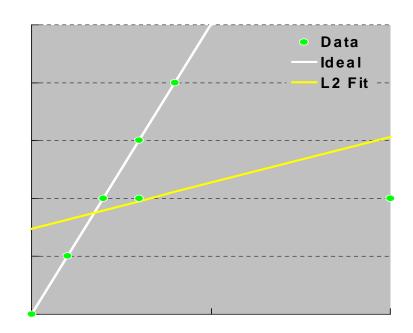
☐ Shape coercion procedure is very sensitive

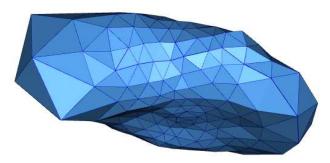
$$x_i = X_m + Pb_i$$

$$db = P^T dx \longrightarrow \text{provided by intensity model}$$

- Designed for computation speed in 1995
 (Pentium I) with 2D cases studies as reference
- •Very sensitive to training set outliers, more frequent in 3D

- scattering of landmark observes shape variability inferred by MDL simplex optimization
- shape coercion only works with corresponding landmarks



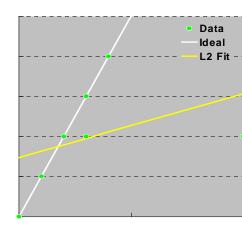


Landmarked putamen (258 ldks)

- **Workaround:** outliers elimination or neutralization in shape space [1]
 - Search for analytic solution

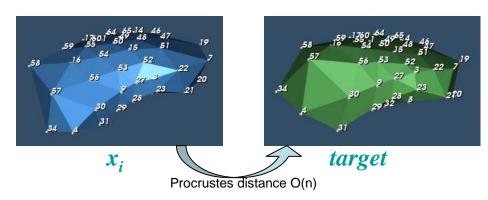
$$db = P^T dx$$

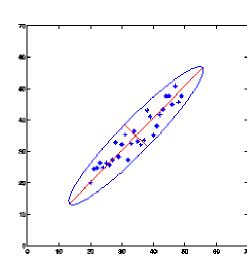
- search for closest amendment leading to target
- assumes previous hypothesis is already good



- ☐ Proposed solution: find any close solution in Euclidean space
 - > at each iteration, search for a *close enough* shape instance
 - use Allowable Shape Domain properties
 - multi-scale search: close solution found within 100 iterations

$$x_i = x_m + P b_i$$



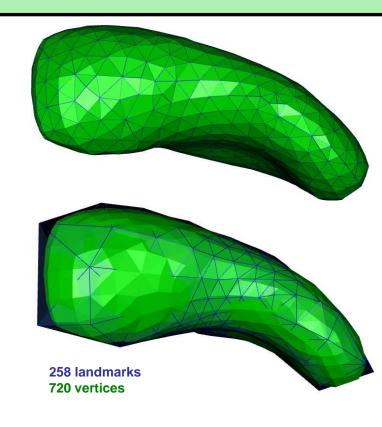


Active Shape Model

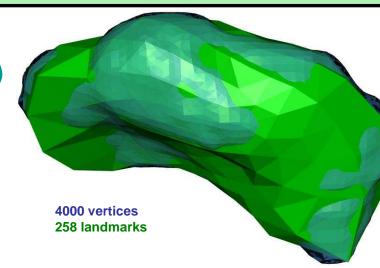
Improving mesh resolution and degree of freedom

- ☐ Landmarked mesh improved by resolution increase
 - Very fast implementation: Qslim [1]
 - Mesh can now be deformed in any direction
 - « Organic-shaped » thanks to smoothing
 - Improved mesh can be considered <u>as dual</u> to landmark mesh

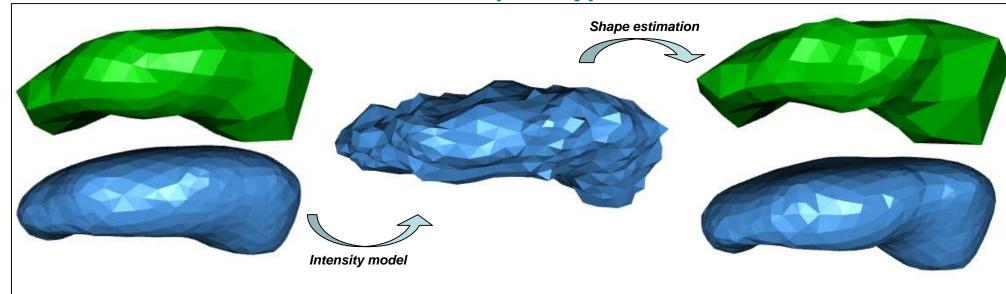
- No more correspondence on vertices
 - \longrightarrow Hausdorff distance $O(2n_1n_2)$ replaces Procrustes O(n)
- Very efficient implementations (very relevant problem in CG): Mesh [2] is >5x faster
- Significant accuracy increase for reasonable computational cost



- ☐ <u>Breakthrough:</u> shape estimation now works for any mesh (representing a shape instance)
 - we can estimate the initial shape prototype from atlas registration
 - mean shape is actually arbitrarily far from this solution



One Iteration of the ASM from this prototype



□ Active Shape Models revisited in 3D:

New method is relevant due to recent advances in Computer Graphics (1995-2007) and CPU/Memory improvements

☐ Time & accuracy benchmark for the improved shape estimation:

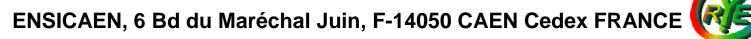
Test shapes	1	2	3	4	5	6	7
Std. method error	5.3	8.0	4.8	3.55	6.5	7.2	5.9
Time (s)	1	1	1	1	1	1	1
Proposed method error	2.5	1.5	2.1	1.2	0.8	1.3	2.2
Time (s)	512	603	540	523	607	561	533

Unit: % of the shape instance bounding box. Shape instances selected randomly

□ Possible Improvements:

- standard I/O optimization (program prototype is script-based)
- low-level optimization using specialized GPUs (CUDA)

GREYC Image - UMR 6072



The end...

Slides & publications:

http://www.vectraproject.com/These/publis.html

Contacts:

Team GREYC Image: http://www.greyc.ensicaen.fr/EquipeImage